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Scenario

Dataset in many covariates W were measured at baseline
Outcome Y – measured after baseline
Question: what is your recommendation for variables that
should be evaluated as treatments (A) in future RCTs?

Which variables, if hypothetically intervened upon
individually, appear to most impact the outcome?

This is one formulation of a causal variable importance
problem.
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Preview: what we’ll get out of this
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Problems with traditional variable importance

Unrealistic functional form, biased, and overfit - e.g. OLS
(overfit relative to penalized regression)
Overly coarse binary results with problematic inference -
Lasso variable inclusion
Often byproduct of procedures with wrong bias-variance
trade-off - focused on predicting outcome
Not targeted to variable importance estimate at each
variable
Masking: correlated variables will be artificially low in
importance
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Variable importance as maximal contrast

Common scientific question: which variables have the
greatest influence on the outcome?
“If I could shift a subject’s covariate value from its worst level
to its best level, how much would that impact the outcome?”
We call this a “maximal contrast” intervention, where the
levels are chosen to yield the greatest treatment effect for
that variable
Hypothetical intervention on a variable may suggest future
real interventions in RCTs
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Our proposed method: varimpact

1 Conduct a separate observational study on each variable,
using its levels as treatments

2 Use training sample to identify 2 levels of treatment variable
to use for contrast

3 Estimate “treatment effect” on test sample at certain levels,
adjusting for other vars

4 Leverage CV-TMLE so bias reduction step (fluctuation) can
include full sample

5 Adjust for multiple comparisons via Benjamini-Hochberg
(1995)

6 Automate data cleaning steps (missing values, etc.)
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Applications:

Childhood leukemia in Costa Rica
Cardiovascular disease - Framingham
Heart Study
Traumatic brain injury in an urgent care
setting
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Applications:
Childhood leukemia in Costa Rica

Outcome: childhood leukemia case-control status (binary)
Sample size: 818 observations, 39% positive
Covariates

Exposures (11): breastfeeding, birth order, allergies, etc.
Demographic covariates (3): sex, age, income
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Childhood leukemia results: Pets
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Childhood leukemia results: Fever
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Childhood leukemia results: Farm Animals
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Table 1: Exposures significantly impacting childhood leukemia

Rank Variable Estimate P-value Adj. P-value CI 95
1 fever 0.2384 0.0000 0.0000 (0.135 - 0.342)
2 pets 0.1775 0.0000 0.0000 (0.101 - 0.254)
3 farmanim 0.0826 0.0049 0.0180 (0.0199 - 0.145)

Chris Kennedy, UC Berkeley Biostatistics github.com/ck37/varimpact 12 / 20



Applications:
Framingham Heart Study

Outcome: heart disease (CHD)
Sample size: 3,263 observations, 26% positive
Covariates (6): age, blood pressure, smoking status,
diabetes status, total cholesterol, HDL cholesterol
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Framingham results: total cholesterol
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Framingham results: HDL cholesterol
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Applications:
Traumatic Brain Injury in an urgent care

setting

Outcome: traumatic brain injury (binary)
Sample size: 784 observations, 43% positive
Baseline covariates: 130
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Traumatic brain injury results

Table 2: Consistent variable importance for TBI

Variable Type Estimate P-value
D-Dimer ordered 0.4142 0.0000

Mechanism factor 0.5170 0.0000
Blunt injury factor 0.4629 0.0000

INR ordered 0.1992 0.0000
Drug use ordered 0.1422 0.0000

Alcohol use factor 0.1505 0.0000
Factor II ordered 0.0877 0.0000

Race factor 0.2611 0.0001
PTT ordered 0.1128 0.0001

Temperature ordered 0.1466 0.0002
Height ordered 0.1178 0.0004
Latino factor 0.1032 0.0021

Table 3: Consistent variable importance for progression

Type Estimate P-value
ethanol factor 0.4695 0.0000

hr0 ddimer ordered 0.3393 0.0000
heightcm ordered 0.2415 0.0013
hr0 pao2 ordered 0.2399 0.0035
aischest3 ordered 0.1493 0.0046

hr0 hgb ordered 0.2233 0.0048
male factor 0.1877 0.0051
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Example code
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More in latest Targeted Learning book (ch. 9)
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Thanks

Questions, comments?

ck37@berkeley.edu

R package: github.com/ck37/varimpact

Twitter: @c3k
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