
Scientific software in-the-large

Michael Lawrence (Genentech Research)

September 7, 2018

Outline

Introduction

Bioconductor as a software distillery

The plyranges package as a catalyst of Bioconductor

Scalability through deferred evaluation and the hailr package

Challenges in genomics software development

Complexity
Algorithms
Scalability

Breadth
Many data types
Many questions

Evolution
New questions

New technologies

Distilling scientific software
Bottom-up innovation, top-down consolidation

Fire of innovation

Condenser of
infrastructure

Waste cut

Extension cut

Fuel supply

Prototype bath

Roles are fluid and context-dependent

Data scientists Bench biologistsEngineers

Enabling insight incubation

Method
Prototyping

Data
Analysis

Insight incubation

Platform
Integration

Programming at different scales

Method
Prototyping

Data
Analysis

Insight incubation

Platform
Integration

Terms from
“Extending R” by
John Chambers

Programming in the
small

Reusable, functions

Programming in the
medium

Generalized, documented,
tested, OOP, packaged

Programming in the
large

Scalability, heterogeneous
architectures, interfaces

Challenges to scientific programming in-the-large

Integration of independently developed modules into a platform
on top of shared infrastructure

Translation of analyses and prototypes to software, based on
transitable interfaces

Scalability through object-oriented abstractions

Outline

Introduction

Bioconductor as a software distillery

The plyranges package as a catalyst of Bioconductor

Scalability through deferred evaluation and the hailr package

Genomics workflows rely on a multitude of tools

FASTQ
BAM

Raw Data Preprocessing/
Reduction

Y

X

Exploratory analysis,
visualization, modeling

Reporting

Genomics workflows rely on a multitude of tools

FASTQ
BAM

Y

X

sa
mt
oo
ls

jup
yte
r

Rm
d

ma
tpl
otl
ib

gg
plo
t2

lim
ma

GA
TK

MA
CS

BW
A

ka
llis
to

be
dto
ols

Tweet-size example from bedtools tutorial

Tweet-size example from bedtools tutorial

Tweet-size example from bedtools tutorial

bedtools genomecov -i a.bam -bga

Compute coverage

awk ‘$4 == 0’

Select zero runs

bedtools intersect -a b.bed -a -

Find intersection with regions

Tweet-size example from bedtools tutorial

bedtools genomecov -i a.bam -bga

Compute coverage

awk ‘$4 == 0’

Select zero runs

bedtools intersect -a b.bed -a -

Find intersection with regions

Typical real-world example from bedtools tutorial

Compute the pairwise similarity between samples of DNAse
hypersensitivity regions, according to the bedtools Jaccard
statistic.

File 1

Compute pairwise Jaccard statistic

File 2

File 3

File 20

File 1

File 2

File 3

File 20

20 x 20
distance
matrix

Munge Plot

bedtools solution

Languages used

I shell
I GNU parallel
I awk
I sed
I perl
I python
I R

Side-effects

I 400 .jaccard

I pairwise.txt

I pairwise.mat

bedtools solution

Languages used

I shell
I GNU parallel
I awk

I sed
I perl
I python
I R

Side-effects
I 400 .jaccard

I pairwise.txt

I pairwise.mat

Compute pairwise distances in parallel

parallel "bedtools jaccard -a {1} -b {2} \
| awk ’NR>1’ \
| cut -f 3 \
> {1}.{2}.jaccard" \
::: `ls *.merge.bed`
::: `ls *.merge.bed`

bedtools solution

Languages used

I shell
I GNU parallel
I awk
I sed
I perl

I python
I R

Side-effects
I 400 .jaccard

I pairwise.txt

I pairwise.mat

Combine jaccard files

find . \
| grep jaccard \
| xargs grep "" \
| sed -e s"/\.\///" \
| perl -pi -e "s/.bed./.bed\t/" \
| perl -pi -e "s/.jaccard:/\t/" \
> pairwise.txt

bedtools solution

Languages used

I shell
I GNU parallel
I awk
I sed
I perl
I python

I R

Side-effects
I 400 .jaccard

I pairwise.txt

I pairwise.mat

Reshape into matrix

awk ’NF==3’ pairwise.txt \
| awk ’$1 ~ /^f/ && $2 ~ /^f/’ \
| python make-matrix.py \
> pairwise.mat

bedtools solution

Languages used

I shell
I GNU parallel
I awk
I sed
I perl
I python
I R

Side-effects
I 400 .jaccard

I pairwise.txt

I pairwise.mat

Plot the matrix

R

library(gplots)
library(RColorBrewer)
jaccard_df <-

read.table(’pairwise.dnase.mat’)
jaccard_matrix <-

as.matrix(jaccard_df[,-1])
heatmap.2(jaccard_matrix,

col = brewer.pal(9, "Blues"),
margins = c(14, 14),
density.info = "none",
lhei = c(2, 8),
trace = "none")

Typical obstacles in implementing genomic data analyses

I Tools are difficult to build, install and run
I Limitations require mixing languages and semi-compatible,

inconsistently documented toolsets
I Interoperability depends on inefficient, complex file formats
I Analyst has to directly manipulate and manage files, instead of

focusing on the analysis
I Reproducibility is hard

Bioconductor

A unified platform for the analysis and
comprehension of high-throughput genomic
data.

I Started 2002
I Led by Martin Morgan
I Core infrastructure maintained by about 8

people, based in Roswell Park CRC in
Buffalo, NY

I >1500 software packages that form a
unified platform

I Well-used and respected.
I 53k unique IP downloads / month.
I 21,700 PubMedCentral citations.

I Embraces the R principles of object,
function, interface and package

Bioconductor distills the cacophony to a symphony

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

source("https://bioconductor.org/biocLite.R")
biocLite()
biocLite("Gviz")

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

se <- TENxBrainData()
se

class: SingleCellExperiment
dim: 27998 1306127
metadata(0):
assays(1): counts
rownames: NULL
rowData names(2): Ensembl Symbol
colnames(1306127): AAACCTGAGATAGGAG-1 AAACCTGAGCGGCTTC-1 ...
TTTGTCAGTTAAAGTG-133 TTTGTCATCTGAAAGA-133
colData names(4): Barcode Sequence Library Mouse
reducedDimNames(0):
spikeNames(0):

libSize <- colSums(assay(se)[, 1:1000])
range(libSize)

[1] 1453 34233

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

Bioconductor qualities

I Discoverable
I Installable
I Reliable
I Documented
I Supported
I Integrated
I Scalable
I State of the art
I Community-

driven

I 1064 unique package maintainers
I Web users by country:

Central data structures of Bioconductor

Data on genomic ranges Summarized data

GRanges: data on genomic ranges

SummarizedExperiment: the central data model

Bioconducting the tweeted workflow

bedtools genomecov -i a.bam -bga

Compute coverage

awk ‘$4 == 0’

Select zero runs

bedtools intersect -a b.bed -a -

Find intersection with regions

Bioconducting the tweeted workflow

bedtools genomecov -i a.bam
-bga

Compute coverage

awk ‘$4 == 0’

Select zero runs
bedtools intersect -a b.bed -a
-

Find intersection with regions

coverage(“a.bam”) %>% GRanges() subset(score > 0) intersect(import(“b.bed”))

Bioconducting the pairwise Jaccard workflow

Define a function for the Jaccard statistic

jaccard <- function(x, y) {
gr_x <- import(x)
gr_y <- import(y)
intersects <- intersect(gr_x, gr_y, ignore.strand=TRUE)
unions <- union(gr_x, gr_y, ignore.strand=TRUE)
sum(width(intersects)) / sum(width(unions))

}

Bioconducting the pairwise Jaccard workflow

Compute the statistics in parallel

files <- Sys.glob("*.merge.bed")
jaccard_matrix <- outer(files, files,

function(a, b) mcmapply(jaccard, a, b))

Bioconducting the pairwise Jaccard workflow

Make the plot

library(gplots)
library(RColorBrewer)
heatmap.2(jaccard_matrix, col = brewer.pal(9, "Blues"))

Outline

Introduction

Bioconductor as a software distillery

The plyranges package as a catalyst of Bioconductor

Scalability through deferred evaluation and the hailr package

The Ranges infrastructure is an incubator

Method
Prototyping

Data
Analysis

Insight incubation

Platform
Integration

I Should be accessible to the average Bioconductor user

Is the transition happening?

I From a typical package submission:
Imports: checkmate, dplyr, ggplot2, tidyr

I A typical initial response:

Aspects of software quality: the ilities

Aspects of software quality: the ilities

Bioconductor is complex

pkgs_to_get_started <-
c("S4Vectors", "IRanges", "GenomicRanges")

pkg_classes <- function(.)
methods::getClasses(asNamespace(.))

n_classes <- sum(lengths(lapply(pkgs_to_get_started,
pkg_classes)))

n_classes

143

n_methods <- length(methods(class = "Ranges"))
n_methods

28

Taking cues from the dplyr package

I dplyr is a API for tabular data manipulation
I Inspired by relational algebra, SQL
I Unified about a single, data model: the tibble
I Operations are:

I Cohesive (do a single thing)
I Endomorphic (return the same type as their input)
I Verb-oriented in syntax

I Fluency emerges from chaining of verbs

genes %>%
group_by(seqnames) %>%
summarize(count_per_chr=n())

Goal

Extend dplyr to genomics, a more complex problem domain, to
achieve the accessibility of bedtools

GRanges are tidy!

plyranges
https://github.com/sa-lee/plyranges

I A dplyr-based API for computing on genomic ranges
I Extending the relational algebra with genomic notions
I Large set of visible verbs acting only on the core data

structures:
GRanges represents annotated genomic ranges

SummarizedExperiment coordinates experimental assay data
with sample and feature annotations

I Collaboration with Stuart Lee and Di Cook @ Monash

Designing a grammar

Genomic semantics on common operations

Arithmetic mutating/shifting/re-sizing/flanking/coverage
Restriction filtering by metadata or ranges

Aggregation summarizing over groups/overlaps/unions
Merging combining ranges based on overlaps/nearest neighbors

Verbs are explicit about genomic features and their
intentions

exons %>%
flank_downstream(2L)

exons %>%
anchor_3p() %>%
mutate(width = 2*width)

exons %>%
shift_upstream(10L)

Merging ranges through overlap joins

I Reimagine overlap/nearest neighbour operations as table joins
I Carry over metadata
I Flatten API via function calls

join_overlap_inner(a, b)
join_overlap_inner_within(a, b)
join_overlap_inner_directed(a, b)
join_overlap_intersect(a, b)
join_overlap_left(a, b)

Formal data structures enable interface fluidity

Programming in the
small

Reusable, functions

Programming in the
medium

Generalized, documented,
tested, OOP, packaged

Programming in the
large

Scalability, heterogeneous
architectures, interfaces

Interoperable data structures

%>%
DPIs (tidyverse)

<-
APIs (base)

S4Vectors

Outline

Introduction

Bioconductor as a software distillery

The plyranges package as a catalyst of Bioconductor

Scalability through deferred evaluation and the hailr package

R’s magical axis labels

plot(1:10)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

Index

1:
10

Dispelling the magic

fun <- function(arg) substitute(arg)
fun(1:10)

1:10

Lazy evaluation

I Delay the evaluation of an expression until its value becomes
necessary

fun <- function(arg) {
z <- arg
substitute(z)

}
fun(1:10)

[1] 1 2 3 4 5 6 7 8 9 10

Deferred data structures
Strategic laziness, eager evaluation

> head(sort(x))

For some promise “x”:

Zhang, Herodotou, Yang (2009) RIOT: I/O-Efficient Numerical
Computing without SQL. https://arxiv.org/abs/0909.1766

https://arxiv.org/abs/0909.1766

Deferred data structures
Strategic laziness, eager evaluation

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

Zhang, Herodotou, Yang (2009) RIOT: I/O-Efficient Numerical
Computing without SQL. https://arxiv.org/abs/0909.1766

https://arxiv.org/abs/0909.1766

Deferred data structures
Strategic laziness, eager evaluation

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort

get

limit

x

Zhang, Herodotou, Yang (2009) RIOT: I/O-Efficient Numerical
Computing without SQL. https://arxiv.org/abs/0909.1766

https://arxiv.org/abs/0909.1766

Deferred data structures
Strategic laziness, eager evaluation

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort

get

limit

x

Serialization

(limit (sort (get x)))

Zhang, Herodotou, Yang (2009) RIOT: I/O-Efficient Numerical
Computing without SQL. https://arxiv.org/abs/0909.1766

https://arxiv.org/abs/0909.1766

I A platform for distributed genomics on Apache Spark
I Initially aimed at genetics but becoming more general
I Defines MatrixTable, an analog of SummarizedExperiment

I Stored with efficient parquet-based storage format (VDS)
I Represented outside of Java heap (Java Unsafe) for

performance and interoperability
I Defines its own byte code targeted by Python and now R

I Filtering, transformation, aggregation, joins of matrix data and
tabular metadata

I Implemented in C++ where beneficial via Java Unsafe

The hailr package

sparklyr SparkR? Other?

SparkDriver

SparkObject

HailDataFrame, HailExperiment, HailPromise

Base

Bioconductor containers are generic

I Bioconductor containers
assume elements implement
key functions from the base
API

I DataFrame allows
anything "vector-like" to
be a column

I SummarizedExperiment
allows anything
"matrix-like" to hold
assay values

I Since our promises
implement the base API,
they just work

I But we still want to map
DataFrame operations to
Hail Table operations

Hierarchical extension of Bioconductor

DataFrame

HailDataFrame
(Hail)
Table

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

Hierarchical extension of Bioconductor

DataFrame

HailDataFrame
(Hail)
Table

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e
SummarizedExperiment

HailSummarizedExperiment
(Hail)

MatrixTable HailMetaFrame

Assays

H
ailM

etaFram
e

Load data into Hail

Directly from a text file:
library(hailr)
data_dir <- system.file("extdata", package="hailr")
tsv1 <- file.path(data_dir, "kt_example1.tsv")
df <- readHailDataFrameFromText(tsv1, header=TRUE)

Copying from an R data.frame:
df <- copy(read.table(tsv1, header=TRUE), hail())

Get it back out

df

HailDataFrame with 4 rows and 8 columns
ID HT SEX X Z

<Int32Promise> <Int32Promise> <StringPromise> <Int32Promise> <Int32Promise>
1 1 65 M 5 4
2 2 72 M 6 3
3 3 70 F 7 3
4 4 60 F 8 2

C1 C2 C3
<Int32Promise> <Int32Promise> <Int32Promise>

1 2 50 5
2 2 61 1
3 10 81 -5
4 11 90 -10

df$ID

[1] 1 2 3 4

A glimpse into the compiler

as.character(df$ID@expr)

[1] "(GetField ID (Ref row))"

Abstractions enable mixed evaluation

DataFrame
H

ai
lP

ro
m

is
e

H
ai

lP
ro

m
is

e

S
ol

rP
ro

m
is

e

H
ai

lP
ro

m
is

e

R
 V

ec
to

r

S
ol

rP
ro

m
is

e

ALTREP

Abstractions enable mixed evaluation

DataFrame
H

ai
lP

ro
m

is
e

H
ai

lP
ro

m
is

e

S
ol

rP
ro

m
is

e

H
ai

lP
ro

m
is

e

R
 V

ec
to

r

S
ol

rP
ro

m
is

e

ALTREP

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> sort(x)[1:5]

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

[()

[,Promise()

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

Optimization

Partial
sort

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

Optimization

Partial
sort

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

Optimization

Partial
sort

Translation

Serialization

solr hail SQL

Related developments

DelayedArray Bioconductor framework for operating on large,
out-of-core arrays

I Pluggable backends for different storage modes
I Defers operations
I Processes chunkwise

ALTREP Generalization of internal R vector implementation
I Compact representations
I Out-of-core storage
I Extensible by packages

	Introduction
	Bioconductor as a software distillery
	The plyranges package as a catalyst of Bioconductor
	Scalability through deferred evaluation and the hailr package

